Polynomial spline collocation methods for the nonlinear basset equation
نویسندگان
چکیده
منابع مشابه
SPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS
The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...
متن کاملPolynomial spline collocation methods for second-order Volterra integrodifferential equations
where q : I → R, pi : I → R, and ki : D → R (i = 0,1) (with D := {(t,s) : 0 ≤ s ≤ t ≤ T}) are given functions and are assumed to be (at least) continuous in the respective domains. For more details of these equations, many other interesting methods for the approximated solution and stability procedures are available in earlier literatures [1, 3, 4, 5, 6, 7, 8, 11]. The above equation is usually...
متن کاملB-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION
We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.
متن کاملApplication of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation
In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using a new approach by combining cubic B-spline functions. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms L2, L∞ are computed. Three invariants of motion are...
متن کاملCollocation Methods for Poisson’s Equation
In this paper, we provide an analysis on the collocation methods(CM), which uses a large scale of admissible functions such as orthogonal polynomials, trigonometric functions, radial basis functions and particular solutions, etc. The admissible functions can be chosen to be piecewise, i.e., different functions are used in different subdomains. The key idea is that the collocation method can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1989
ISSN: 0898-1221
DOI: 10.1016/0898-1221(89)90239-3